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Abstract
We point out that the probability law of a single domain wall separating clusters
in ADE lattice models in a simply connected domain is identical to that of
corresponding chordal curves in the lattice O(n) and Q-state Potts models, for
suitable n or Q. They are conjectured to be described in the scaling limit by
chordal SLEκ with κ rational and >2. However in a multiply connected domain
the laws can differ from those for the corresponding O(n) or Potts model. The
correspondence also sheds light on the scaling limit of multiple curves.

PACS numbers: 05.50.+q, 11.25.Hf
Mathematics Subject Classification: 82B20, 82B41

1. Introduction

Chordal Schramm–Loewner evolution [1] (SLE) is the unique family of conformally invariant
measures on curves connecting two distinct boundary points of a simply connected domain. It
is commonly conjectured (and in some cases proved) to describe the scaling limit of suitably
defined curves in critical equilibrium lattice models, for example the O(n) and Q-state Potts
models. These models are originally defined as lattice spin models for integer values of
n and Q � 2. However in the random curve representation of either model as a gas of
non-intersecting closed loops, each loop is weighted with a factor n (respectively

√
Q) and

so it gives a probability measure on loops for all non-negative values of these parameters.
These measures are however non-local in the sense that they are not product measures over
regions with a finite number of degrees of freedom. To get local measures, one needs to go
back to the spin representations, which make sense only for n = 1, 2 and Q = 2, 3, 4 in the
regions n � 2 and Q � 4 where these models are conjectured to have a non-trivial scaling
limit.

The importance of a local probability measure arises in the connection with conformal
field theory (CFT), because it implies that the corresponding CFT should satisfy reflection
positivity and therefore be representable in terms of operators acting on a space of states with
non-negative norm. In any 2D CFT, the scaling operators may be arranged into representations
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of two commuting Virasoro algebras, and the above requirement then implies that these
representations be unitary. This fact was used by Friedan, Qiu and Shenker [2] to classify
all such possible unitary CFTs with central charge c < 1. This leads to a discrete series of
possible values for c

c = 1 − 6

m(m + 1)

with m being an integer �3, while the allowed values of the scaling dimensions (h, h̄)

(conformal weights) of the primary operators are restricted to take values in the Kac
table,

hr,s = (r(m + 1) − sm)2 − 1

4m(m + 1)
,

where 1 � r � m − 1, 1 � s � m.
One important feature of these CFTs is the closure of the operator product expansion

(OPE) on a finite number of primary operators or their descendants, with scaling dimensions
within the Kac table above. This also happens in a wider class of models, the minimal models,
which are labelled by a coprime pair of positive integers (p, p′), with the formulae above
replaced by

c = 1 − 6(p − p′)2

pp′ (1)

and

hr,s = (rp − sp′)2 − (p − p′)2

4pp′ ,

where 1 � r � p′ − 1, 1 � s � p − 1.
However this result does not determine exactly which of these values occur in a given

CFT. It was pointed out [3] that this is highly constrained by modular invariance of the partition
function on the torus. This condition was solved by Cappelli, Itzykson and Zuber [4], who
showed that the resulting CFTs can be labelled by Coxeter diagrams1 of type A, D or E with
Coxeter number p. By generalizing the restricted solid-on-solid models of Andrews, Baxter
and Forrester [5] (which correspond to the A series) Pasquier [6, 7] constructed lattice ADE
models, with local weights defined by the adjacency matrix of G, which he showed, on the
basis of Coulomb gas and other arguments, give the CFTs corresponding to p′ < p. Later,
Kostov [8] defined dilute ADE models which correspond to the other case.

In this note we recall these arguments in the context of identifying candidates for curves
in lattice models with local weights which should have SLE as their scaling limit. In the case
of a simply connected domain with suitable boundary conditions, we argue that these curves
have weights identical with those of the O(n) or Q-state Potts models with the same value of c,
and therefore if the latter converge to SLE in the scaling limit, so do the corresponding curves
in the ADE models. For other geometries, however, the weights are not in general the same,
even in the scaling limit. This observation relates to the apparent non-uniqueness of attempted
definitions of SLE in multiply connected domains [9], and of connection probabilities of
multiple SLEs. We also show that, in the case Am, the law of N < m curves is the same as N
‘ordinary’ multiple SLEs (with the same value of κ) conditioned not to meet. In that case the
resulting partition functions agree with those recently proposed by Bauer, Bernard and Kytola
[10] and Dubédat [11].

1 For pictures and further information, see references [7, 8].
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Most of the ideas in this paper are not new, in fact some of them date back 20 years. The
main purpose to recall them in the context of SLE for those currently working in this active
field.

The outline of this paper is as follows. In section 2 we define the dilute and non-dilute
models for which the heights take values on the nodes of any connected graph G. We recall
the arguments of Pasquier which show that the models can be reformulated as a gas of non-
intersecting loops, where each loop is weighted by �, an eigenvalue of the adjacency matrix
of G. For the local weights in these models to be real and positive, � must be the largest
eigenvalue. The requirement that this weight should be strictly less than 2 (corresponding to
CFTs with c < 1) then restricts G to be one of the ADE Coxeter diagrams. Inclusion of � = 2
(c = 1) allows G to be an extended Coxeter diagram of type Â, D̂, Ê, or A∞, which is the
discrete Gaussian model. The other non-unitary minimal models then correspond to taking �

to be a non-maximal eigenvalue. In general these have complex local weights, although the
loop gas measure still makes sense as long as � � 0.

In a simply connected domain with homogeneous boundary conditions, there are only
closed loops, and Pasquier’s arguments show that in any of the ADE models these are weighted
exactly as in the corresponding O(n) or Q-state Potts models, and therefore should have the
same scaling limit. This has recently been conjectured to be the conformal loop ensemble
(CLEκ ) [12]. The above identification of ADE and the other models is in agreement with the
idea that, given a value of κ , the CLE is a unique conformally invariant measure on nested
closed loops in a simply connected domain.

In section 3 we identify the clusters whose boundaries are supposed to be described by
SLE in the scaling limit. In the dilute ADE model, these are clusters of adjacent lattice sites
with the same height. In the non-dilute model they are boundaries of clusters in a Fortuin–
Kasteleyn-type representation. By trivially extending Pasquier’s arguments we show how, with
suitable boundary conditions, chordal curves separating clusters whose heights correspond to
adjacent nodes of G have the same weights as corresponding curves in the O(n) and Potts
models. Then, in section 4 we discuss the additional features which arise for multiple curves
and in multiply connected domains.

After this work was completed a paper [13] by P Fendley appeared which covers some of
the same material from a slightly different point of view. In addition this paper discusses new
loop models corresponding CFTs with central charge c > 1 which would be very interesting
to understand from the SLE perspective.

2. ADE lattice models and loop gases

In this section we recall the definition of the local height model associated with a graph G, and
the arguments of Pasquier [7] transforming it to a loop gas.

2.1. Dilute ADE models.

This case is actually slightly simpler to discuss, so we present it first. The dilute models were
first introduced by Kostov [8] (see also Nienhuis [14]), and shown to be part of an integrable
family of models satisfying the Yang–Baxter relations by Roche [15] and by Warnaar, Nienhuis
and Seaton [16]. Kostov’s models were originally defined on a square lattice, but it is more
natural, and symmetrical, to define them on a regular triangular lattice as follows.

At each site j of the triangular lattice is a height hj , which takes values on the nodes of
a fixed connected graph G. We denote the adjacency matrix of G by G. There is a constraint
whereby the heights at neighbouring sites of the triangular lattice must either be equal, or
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Figure 1. An elementary triangle with unequal heights (a, b, b) is marked by a curve segment on
the dual honeycomb lattice as shown. This carries a weight (Sa/Sb)

1/6.

adjacent on G. Assuming that G has no cycles of length �3, this implies that at least two of the
heights around any elementary triangle must be equal. The weight for a given configuration is
the product of the weights over all the elementary triangles of the lattice. These are given as
follows: if all the heights are equal, the weight is 1; if the heights are, for example, (a, b, b),
the weight is x(Sa/Sb)

1/6, where Sa is a strictly positive function on the nodes of G, to be
made explicit later.

In the second case, one may mark the triangle as shown in figure 1 by two straight lines
connecting the midpoints of the two edges joining the heights which differ to the centre of the
triangle. These must join up with similar lines in the neighbouring triangles, and therefore
must form closed, non-intersecting loops on the dual honeycomb lattice (or open curves which
end at a boundary). For the time being, restrict to a simply connected domain where all the
heights on the boundary are fixed to take the same value. Then we have only closed loops.
Every loop separates a cluster of sites all with the same height, say a, on its immediate interior
from a cluster of sites with a different height, say b, adjacent to a on G, on its exterior. If
one multiplies all the factors of (Sa/Sb)

±1/6 around a given loop, this always gives Sa/Sb

irrespective of the shape of the loop.
The loops form a nested structure. Now sum over all allowed values of the heights

consistent with a given configuration of loops, starting with the innermost clusters. Each sum
has the form ∑

a

Gab(Sa/Sb).

It is only straightforward to repeat this procedure at the next level of nesting if this is some
constant � independent of b: or, equivalently∑

a

GabSa = �Sb.

That is, the Sa should be the components of an eigenvector of G with eigenvalue �. Taking
this to be the largest (Perron–Frobenius) eigenvalue then guarantees that all the Sa are positive.

Summing iteratively over all heights of all the clusters then gives a factor � for each
closed loop. This is to be compared with the O(n) model on the honeycomb lattice, which
can be written in terms of identical loops weighted with a factor n for each loop, as well as a
factor x.

This result shows that the law of the dilute ADE loops in a simply connected domain with
homogeneous fixed height boundary conditions is identical to those of the O(n) model with
free boundary conditions, at the same value of x, with the identification n = �. If n > 2, the
O(n) model is known either to be non-critical or to exhibit only first-order critical behaviour.
The condition that � < 2 restricts G to be of the ADE type (or A2m/Z2, which does not give
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a sensible model.) � = 2 corresponds to one of the extended ADE diagrams or A∞. In each
of the ADE cases, � = 2 cos(π/h) where h is the Coxeter number of the graph.

The case Am is simple: we then have � = 2 cos(π/(m + 1)) and Sa ∝ sin(πa/(m + 1))

with a ∈ {1, . . . , m}. The case m = 2 corresponds to the Ising model on the triangular lattice.
The O(n) model for n � 2 on the honeycomb lattice is conjectured [17] to have a critical

point at x = xc = (2 +
√

2 − n)−1/2. The scaling limit is also conjectured, using Coulomb
gas and CFT arguments, to correspond to κ � 4, where n = −2 cos(4π/κ). Putting these
relations together in our case we have

κ = 4h

h + 1
,

where h = m + 1 for the Am models.
The complete set of eigenvalues of G are given by � = 2 cos(πh′/h), where h′ < h is one

of the Coxeter exponents of G: for Am these take all integer values in the range 1 � h′ � m.
The generalization of the above relation is then

κ = 4h

h + h′ . (2)

If we consider all possible Am models with m � 2, this includes all rational values of κ in the
interval (2, 4). However only those in

(
8
3 , 4

)
have positive weights for the loops.

The whole phase for x > xc is supposed to be critical and corresponds to κ � 4, with the
same relation between n and κ . In that case we have, in the unitary case,

κ = 4h

h − 1

and more generally

κ = 4h

h − h′ . (3)

If we consider all possible Am models, this includes all rational values of κ > 4. However
only those in (4, 8) have positive weights for the loops.

2.2. Non-dilute ADE models

These are most easily defined on a square lattice. Once again there are heights at the vertices
which take values on the nodes of G, but now heights at neighbouring sites must be strictly
adjacent on G and are not allowed to be equal. If G has no cycles of length �4, this implies
that at least one of the diagonally opposite pairs of heights in each elementary square must
be equal. In any case, this constraint is enforced by the weights (see below). Note that this
also implies that the even sublattice is populated by heights from the even nodes of G, and the
odd sublattice by heights from the odd nodes (or vice versa, as determined by the boundary
conditions.) The weight for a height configuration on the whole lattice is a product of the
weights around each elementary square. Labelling the heights by (a, b, c, d) (see figure 2),
these are given by2

W(a, b, c, d) =
(

SbSd

SaSc

)1/4

δac +

(
SaSc

SbSd

)1/4

δbd . (4)

2 This symmetrized version is equivalent to the standard one in which the coefficient of the first term is taken to be
unity and the power in the second term is 1

2 . This version is more suitable for transfer matrix and Temperley–Lieb
considerations.
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bd

c

Figure 2. Heights around an elementary square. If the first term in (4) is chosen, an edge is
drawn connecting a and c as shown. This carries weight (SbSd/S2

a )1/4, which can be distributed
into factors (Sb/Sa)

1/4 and (Sd/Sa)
1/4 at the corners of the corresponding loop(s) on the medial

lattice.

The weight for a given configuration on the whole lattice may now be expanded as a sum
of 2N terms, where N is the total number of elementary squares. In each elementary square
we may draw an edge connecting the sites with heights a and c if the first term is chosen,
or one connecting the sites with heights b and d if the second term is chosen. The result
is to decompose the edges of the even sublattice into clusters. Within each cluster all the
heights are constrained to be equal. A similar decomposition holds for the edges of the odd
sublattice. Neighbouring clusters on the even sublattice are separated by clusters on the odd
sublattice and vice versa. The picture is identical to that which occurs in the Fortuin–Kasteleyn
(random cluster) representation of the Potts model, with the clusters on the even sublattice
being identified as the clusters of Potts spins, while those on the odd sublattice correspond
to the clusters of dual spins. As in the Potts case, neighbouring clusters can be separated by
dense non-intersecting curves on the medial lattice, which either form closed loops or end at
a boundary.

The nice property of this picture is that the weights can now be distributed at the corners
of these curves (see figure 2). A corner which separates a cluster of height b from one of height
a, such that the height within the acute angle of the corner is b, carries a weight (Sb/Sa)

1/4.
Now consider a simply connected domain with homogeneous wired boundary conditions.

By wired we mean that the squares on the boundary carry only the term in (4) which corresponds
to there being an edge between the boundary sites. (Clearly this requires that all the boundary
sites be on the same sublattice, say even.) We can then suppose that the heights on the
boundary are fixed to a given value. The edges connected to the boundary form the boundary
cluster. This cluster may be adjacent on its interior to several clusters on the odd sublattice,
which themselves may be adjacent on the interior to clusters on the even sublattice, and so on.
The curves on the medial sublattice may only form closed loops. Each loop may touch only
one cluster internally, and one externally. The loops form a nested structure as in the dilute
case, separating clusters on which the heights all agree. A loop enclosing a cluster of height
a and enclosed by one of height b carries a total weight (Sa/Sb), irrespective of the shape of
the loop.

The summation over the heights for a given configuration of loops then proceeds as in the
dilute case. The weighting of the loops is exactly as for the FK representation of the critical
Q-state Potts model, with identification � = √

Q. The scaling limit for � � 2 is supposed
to be described by CLEκ as before. In this case we get only values of κ � 4; however,
corresponding to the values in (3). Now the case G = A3 corresponds to the Ising model. The
heights on one sublattice are all fixed to the same value a = 2. On the other sublattice they
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take the values (1, 3) corresponding to ±1 in the usual formulation of the Ising model. The
Q-state Potts model in fact corresponds to G being a star graph with a central node connected
to Q points. It is straightforward to check that the largest eigenvalue of the adjacency matrix
is � = √

Q.
It is interesting to attempt to identify the boundaries of connected clusters with the same

value of the height variables in the non-dilute ADE models (as for the Ising model.) For the
Am models some progress can be made in that direction. Consider the elementary squares
around which the heights take the values (a, a + 1, a, a − 1). If we draw an edge connecting
the two sites with height a, this may be thought of as part of the boundary separating clusters
of heights a ± 1. It is straightforward to see that only an even number of these edges can
meet at any one vertex of the square lattice, and therefore the set of such cluster boundaries is
the same as in the Ising case m = 3. However, to proceed further, one needs to sum over all
possible values of the heights within each closed loop, and this is difficult in general. At the
critical point, we expect to recover weights for the loops which are the same as those in the
dilute O(n) model on the square lattice (with some convention for dealing with the vertices
where four edges meet) but it may be that this identification occurs only in the scaling limit.
In the next section we present some evidence for this conjecture.

2.3. Models with κ = 4

The models defined on graphs G whose adjacency matrix has largest eigenvalue � = 2
correspond to κ = 4. In that case G is either A∞ (the integers) or one of the extended Coxeter
diagrams, for example Âm. This has m nodes arranged in a ring. The first case corresponds to
the ordinary solid-on-solid model with the constraint that nearest-neighbour height differences
take the values (0,±1) (dilute model) or strictly (±1) (non-dilute model). The Âm models are
particular realizations of the Zm clock models, with same nearest-neighbour constraints. In
these cases the largest eigenvalue of the adjacency matrix is always � = 2, corresponding to
Sa = const, and the arguments of the previous sections show that the law of loops (and chordal
curves—see below) in a simply connected domain is identical with that of the O(2) model
(dilute) or the FK 4-state Potts model (non-dilute). (The latter in fact corresponds exactly to
D̂3.) However in the clock models it is necessary that m � 4, to avoid 3-cycles. All these
models are supposed to have the same scaling limit given by the Gaussian free field.

3. Inhomogeneous boundary conditions and chordal curves

In this section we identify curves in these models which are candidates for chordal SLE in the
scaling limit. We show that the law of these curves is identical to those in the corresponding
O(n) and Potts models.

The dilute ADE models are simpler to discuss. To identify a chordal curve we consider
a simply connected domain and impose one type of fixed boundary condition, say a, on one
segment of the boundary (the left boundary), and another, say b, on its complement (the right
boundary). This is strictly possible only if a and b are adjacent on G, in which case, in the
construction above, there is exactly one lattice curve γ connecting the points z1, z2 where the
boundary conditions change. The sites immediately to the left of γ all have height a; those
immediately to its right have height b. If a and b are not adjacent on G, there must be several
lattice sites separating the left and right parts of the boundary. This interval will go to a point
in the scaling limit, but the sites in between will be the starting points of more than one curve.
This situation therefore cannot give a single chordal curve—the right-hand boundary of the
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height cluster connected to the left boundary is not identical with the left boundary of the
cluster connected to the right boundary.

Given now a chordal curve γ connecting z1 and z2, as well as sets of nested closed loops in
the simply connected domains (with homogeneous boundary conditions) to its left and right,
we may sum over all the heights as before, beginning with the most deeply nested clusters.
This will give rise, as before, to a factor � for each closed loop. The curve γ itself will
accumulate factors (Sa/Sb)

±1/6 for each left or right turn. However since the number of right
minus the number of left turns is the same for every configuration, the relative weights are all
the same.

We conclude that the law of a single chordal curve in the dilute ADE models in a simply
connected domain is the same as in the O(n) model, and is therefore conjectured, in the scaling
limit, to be given by SLEκ with κ given by (3), (2).

For the non-dilute ADE models in the FK representation, consider boundary conditions
wired to a fixed height a on the left boundary, and to height b on the right boundary. Once
again, the right boundary of the cluster attached to the left boundary, and the left boundary of
the cluster attached to the right boundary are adjacent only if a and b are adjacent on G. (Note
that this means that the sites on the left and right boundaries must be on opposite sublattices.)
This then defines a chordal lattice curve γ which separates these two clusters. The summation
over heights goes as before, and we conclude that the law of γ is identical to the law of the
curve in the Q-state Potts model, for the appropriate Q, with wired boundary conditions on the
Potts spins on the left boundary and free boundary conditions (i.e., wired on the dual spins)
on the right boundary, which touches the right boundary of the FK cluster attached to the left
boundary. This is supposed to be given by SLEκ in the scaling limit, with κ � 4.

In this case, there is supporting evidence for this identification from CFT. In the Am

models, the boundary changing operator between a boundary wired to height 1 and to height a
was identified by Saleur and Bauer [18] as a φ1,a operator in the Kac classification. Here 1 is
a height at either extremity of the diagram. According to boundary CFT, the operator content
at a change of boundary conditions from a to b is given by fusing φ1,a and φ1,b. According
to the fusion rules of the A theories, this contains a φ1,2 operator if and only if a and b are
adjacent on the diagram. As was shown by Bauer and Bernard, and Friedrich and Werner, the
existence of a φ1,2 boundary condition-changing operator is necessary for this to be an end
point of an SLE (with κ � 4.)

A similar argument may be applied to the height cluster boundaries in the non-dilute case.
Saleur and Bauer [18] also considered boundary conditions where the heights are fixed to
r on the boundary sites, and to r + 1 on the sites adjacent to the boundary, and argued that
the boundary condition changing operator between (1, 2) and general (r, r + 1) corresponds
to φr,1 in the Kac classification. The fusion rules can then be used to show that the leading
boundary condition changing operator between boundary conditions a, a − 1 and a, a + 1 is
a Kac φ2,1 operator, which is a necessary condition for there to be an SLE with κ < 4 starting
at the point where the boundary condition changes. A candidate for this curve is the cluster
boundary described in the previous section, with some convention for dealing with the 4-valent
vertices.

It was recently shown by Riva and Cardy [19] and Smirnov [20] that parafermionic
observables of fractional spin s may be defined on the curves in FK Potts models which
weight the indicator function that curve goes along a given edge of the medial lattice with
a phase eisθ , where θ is the winding angle. These observables are discrete holomorphic if
κ = 8/(s + 1). (Smirnov has also given a similar construction for the O(n) model.) Their
correlators should converge to those of holomorphic parafermions in the corresponding CFT,
although the convergence has so far been proved [20] only for the Ising case. The above result
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Figure 3. A chordal curve in the annulus connecting two points on the same boundary. The law of
this curve is sensitive to the number of non-contractible loops, whose weights depend non-trivially
on the boundary heights.

then implies that holomorphic parafermions of spin s = 1 ± (2h′/h) should also exist in the
ADE models.

4. Non-simply connected domains and multiple SLEs

4.1. Non-simply connected domains

In this section we show that the law of chordal curves in a multiply connected domain can in
general be different for different models with the same value of κ . As an example, consider
the annulus pictured as a simply connected domain with a hole, and a chordal curve γ which
connects two points on the same boundary of the annulus (see figure 3). In the ADE models,
this can be enforced by imposing fixed height boundary conditions, say a and b, on the left
and right segments of the other boundary, and c (not equal to a or b) in the inner boundary. In
the Potts model, it would be necessary to condition γ not to hit the inner boundary. Without
loss of generality we may assume that γ passes to the left of the hole, so that the region to its
right has the topology of an annulus.

In this case, as well as the chordal curve, there will in general be non-contractible closed
loops which wrap around the annulus, as well as loops homotopic to a point. The summation
over the heights within the latter proceeds as before, giving a factor � for each loop. However
this is not the case for the non-contractible loops. In fact, if there are N such loops, we get
instead

[GN ]bc (5)

which may be interpreted as the number of N-step random walks on G from b to c. In general
this depends on the choice of G and on where b and c are located on G. For the Potts model,
on the other hand, there is always simply a factor (

√
Q)N , essentially because all the other

relevant eigenvalues of G are zero.
This result implies that there is no unique way of prescribing the driving term for SLE

in an annulus or more complicated multiply connected domain (although we note that this
difficulty does not arise for curves which begin and end on different boundaries of the annulus
[21].) The distribution of the random variable N depends on the modulus of the annulus and
can be computed using Coulomb gas methods. It would be interesting to use this to compute
the SLE driving term for each of these models.

However we note that there is nevertheless a ‘canonical’ version, in which each non-
contractible loop is counted with a weight �. In the ADE models this may be realized by
summing over the boundary conditions c on the inner boundary, and weighting them with a
factor Sc. This projects out the required eigenvalue.
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Figure 4. An arch configuration in which N curves are conditioned to connect the boundary points
as shown. Such a conditioning is natural in the Am models if N < m.

Also, as the size of the hole shrinks, keeping all other length scales fixed, the typical value
of N goes to infinity. In that case, only the largest eigenvalue � of G is important in (5), and
the law of γ becomes universal once again. In this case it should be described by some version
of SLE(κ, ρ).

4.2. Multiple SLEs

The law of multiple chordal curves in a simply connected domain has been considered by
Bauer, Bernard and Kytola [10] from the point of view of CFT, and also by Dubédat [11].
One of the objects of interest is not the law of the curves themselves (which is given by a
version of SLE(κ, ρ)) but the relative probabilities of the various ways the curves can connect,
or arch configuration, given a set of 2N points on the boundary. These are given by ratios
of partition functions in statistical mechanics, which satisfy second-order partial differential
equations with respect to the positions of the points. These are just the BPZ equations resulting
from the fact that the CFT operators which create the curves are φ1,2 (or φ2,1) operators in the
Kac classification (for κ > 4 and <4, respectively.) However there is a question of which
boundary conditions correspond to a given arch configuration. A clear answer to this is given
by considering the equivalent problem in the Am models.

Let us consider the geometry shown in figure 4. There are 2N points on the real
axis, connected by N curves in the upper half plane. Label these points in increasing
order as (x1, . . . , xN) and (yN, . . . , y1), and consider the connection shown in figure 4 in
which xj is connected to yj . Denote the partition function for this arch configuration by
ZN(x1, . . . , xN ; yN . . . , y1). Its possible behaviour as neighbouring points approach each
other is given by the fusion rules of CFT: φ1,2 · φ1,2 = φ1,1 + φ1,3, which means that as
δ = xj+1 − xj → 0, ZN can be expressed as a linear combination of two terms, one of which
behaves as δ−2h1,2 = δ−(6−κ)/κ and the other as δh1,3−2h1,2 = δ2/κ . Identical possibilities hold if
xN approaches yN .

Bauer, Bernard and Kytola identify an arch configuration in which x1 is connected with
y1 as being associated with a solution where the dominant term as x1 → y1 is the fusion to
the identity operator φ1,1, while if neighbouring curves are conditioned not to meet, as for
xj → xj+1, it is associated with the solution corresponding to fusion to the φ1,3 operator. In
that case it is natural to normalize ZN so that, as xN → yN

ZN(x1, . . . , xN ; yN . . . , y1) ∼ (yN − xN)−(6−κ)/κZN−1(x1, . . . , xN−1; yN−1 . . . , y1)

with Z0 = 1 by convention.
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Figure 5. The two different ways two curves can connect. The relative probabilities depend not
only on κ but also on the model and the boundary conditions.

Among all the solutions to the system of BPZ differential equations with the above
boundary conditions as xj → yj there is in general one in which the operators φ1,2(xj ) all
fuse to the φ1,N+1 operator, and similarly for the φ1,2(yj ). In that case it can be argued that in
this limit ZN has the form

ZN ∝
∏

1�j<k�N

(xk − xj )
2/κ

∏
1�j<k�N

(yj − yk)
2/κ(y − x)−2h1,N+1 , (6)

where x ∼ xj , y ∼ yj .
By conformally mapping y to infinity, Bauer et al [10] identify this boundary condition as

selecting the partition function for N curves conditioned to go to infinity (rather than forming
arches among the points xj ). For small enough N this is completely consistent with the
identification with curves in the Am model. Suppose in the Am model we fix the boundary
conditions on each segment of the real axis to be (1, 2, . . . , N,N + 1, N,N − 1, . . . , 1) in
order, where these integers label nodes on the Coxeter diagram. Each of the points where the
boundary conditions change will be an end point for a curve, and will correspond to a φ1,2

operator. As long as N � m − 1, without any further conditioning these curves must connect
as in figure 4. Moreover if we now let xj → x and yj → y, we have boundary condition
changing operators from 1 to N at x and y, which are known [18] to correspond to φ1,N+1

operators.
However, these boundary conditions do not specify the relative normalization of

the partition functions for each arch configuration, which are needed for the connection
probabilities. For example, in the case N = 2, what are the relative probabilities of the two
arch configurations shown in figure 5? The boundary conditions above fix each partition
function as a function of the cross-ratio η of the four points, up to overall constants. In the
case of the Ising model (κ = 3) or of the boundaries of the FK Potts clusters, where there is a
Z2 symmetry (spin reversal or duality) under the exchange of the two configurations, one may
argue [10] that the relative weight must be 1 at the symmetry point η = 1

2 , which determines
the relative probabilities for all values of η. However, for other ADE models with the same
value of κ , this ratio may be modified. To see this it is useful to examine the case where the two
curves pass through the same square (in the non-dilute models.) In that case the two different
ways of connecting the curves are weighted in the ratio (Sa/Sb)

1/2 : (Sb/Sa)
1/2 = Sa/Sb. For

the Ising or Potts models this would be unity, but in general it is different. It is also easy to
see that the factor Sa/Sb depends only on the topology and not the fact that the curves pass
through the same square.

Once again this argument shows that certain aspects of these random curves, even in the
scaling limit, are model dependent and not solely determined by κ .
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[11] Dubédat J 2004 Preprint math.PR/0411299
[12] Sheffield S 2006 Preprint math.PR/0609167
[13] Fendley P 2006 Preprint cond-mat/0609435
[14] Nienhuis B 1982 J. Phys. A: Math. Gen. 15 199
[15] Roche Ph 1992 Phys. Lett. B 285 49

Roche Ph 1992 Preprint hep-th/9204036
[16] Warnaar S O, Nienhuis B and Seaton K A 1992 Phys. Rev. Lett. 69 710
[17] Nienhuis B 1983 J. Stat. Phys. 34 731

Nienhuis B 1987 Phase Transitions and Critical Phenomena vol 11 ed C Domb and J Lebowitz (New York:
Academic)

[18] Saleur H and Bauer M 1989 Nucl. Phys. B 320 591
[19] Riva V and Cardy J 2006 Preprint cond-mat/0608496
[20] Smirnov S 2006 Proc. Int. Congress of Mathematicians (Madrid, 22–30 August, 2006) J. European Math. Soc.

2 1421
[21] Zhan D 2003 Preprint math.PR/0310350

http://www.arxiv.org/abs/math.PR/9904022
http://dx.doi.org/10.1103/PhysRevLett.52.1575
http://dx.doi.org/10.1016/0550-3213(86)90552-3
http://dx.doi.org/10.1007/BF01221394
http://dx.doi.org/10.1007/BF01014383
http://dx.doi.org/10.1016/0550-3213(87)90332-4
http://dx.doi.org/10.1088/0305-4470/20/18/003
http://dx.doi.org/10.1016/0550-3213(92)90120-Z
http://www.arxiv.org/abs/hep-th/9112059
http://www.arxiv.org/abs/math.PR/0503178
http://dx.doi.org/10.1007/s10955-005-7002-5
http://www.arxiv.org/abs/math-ph/05030124
http://www.arxiv.org/abs/math.PR/0411299
http://www.arxiv.org/abs/math.PR/0609167
http://www.arxiv.org/abs/cond-mat/0609435
http://dx.doi.org/10.1088/0305-4470/15/1/028
http://dx.doi.org/10.1016/0370-2693(92)91298-N
http://www.arxiv.org/abs/hep-th/9204036
http://dx.doi.org/10.1103/PhysRevLett.69.710
http://dx.doi.org/10.1007/BF01009437
http://dx.doi.org/10.1016/0550-3213(89)90014-X
http://www.arxiv.org/abs/cond-mat/0608496
http://www.arxiv.org/abs/math.PR/0310350

	1. Introduction
	2. ADE lattice models and loop gases
	2.1. Dilute ADE models.
	2.2. Non-dilute ADE models
	2.3. Models with K = 4

	3. Inhomogeneous boundary conditions and chordal curves
	4. Non-simply connected domains and multiple SLEs
	4.1. Non-simply connected domains
	4.2. Multiple SLEs

	Acknowledgments
	References

